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Background

• Why do we need better jet engines?

- Today’s engines a marvel of engineering – already
vastly better than the first engines
1) efficiency has gone from 20% (first jets) to 30% (B747) to >40% (A350)

2) 30dB quieter than early engines (B707) – reduction of >80% of noise!

3) 50% or more reduction in emissions (e.g. NOx)

4) Much more reliable, can fly long distances with 2 engines, service 
intervals much longer, saving passengers money

https://southpawcaptures.com/aviationblog/2018/10/16/vh-znd-qantas-787-9-yam-dreaming

- Aviation predicted to grow further 

- Need next-generation engines to do this sustainably 

- Commercial aviation burns around 350 billion liters fuel

- For each % jet engines can be made more efficient:  

● reduce fuel cost by AUD billions/year (AUD60 million in AUS)

● reduce CO2 emissions by 1.5%

https://commons.wikimedia.org/w/index.php?curid=28787531



Background

Computational models could fast track designs, 
allowing designers to take ‘virtual risks’

https://www.geaviation.com/commercial/engines/ge9x-commercial-aircraft-engine

https://southpawcaptures.com/aviationblog/2018/10/16/vh-znd-qantas-787-9-yam-dreaming

• How can HPC help?

- Today’s engines really complex, with many parts

- Takes long time (decade) to develop and billions of $

- Building prototypes very expensive/time consuming

- Difficult to measure airflow inside jet engine

(very high temperatures, pressures, speeds)

Computational Fluid Dynamics can tell engineers
exactly what happens inside engine



HPC – High-fidelity simulations HPT



Background

• HPC’s role in machine learning

- To avoid high simulation cost, industrial design uses modelling

• HPC for detailed simulations

- Can run high-fidelity simulations that provide required accuracy

- BUT: simulations very complex, with > 1016 degrees of freedom

Hi-Fi RANS
limits impact CFD can 
have on technology 
development 

- Current models inaccurate for certain problems

Use ML and Hi-Fi data 
to improve models 

- Takes > 1000 years on notebook, can do in weeks on NCI



HPC for simulating what really happens 
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HPC - In house Simulation Code

HiPSTAR: High-Performance Solver for Turbulence and Aeroacoustics Research

Thoroughly validated e.g. wake loss low-pressure turbine → DNS

Experi.

Flexible
• Internal/External Aerodynamics

• Immersed boundary

• Buoyancy effects

• Full 3D geometries
• Sliding/Overset  mesh

Strong scaling: increasing number 

of cores for same problem size. 

Code has run on 2x106 cores and 

>10,000 GPUs.

Fast
• Optimized for

CPU and GPU

Gadi cores



HPC – High-fidelity simulations

Low-pressure turbine

Optimal spacing between turbine blades (for minimal loss)?

Large gap: longer, heavier machine
Small gap: shorter, lighter machine

Study of realistic turbine stage, varying axial gap size
(Pichler et al., GT2017-63407, JoT 2017)

• Modern LPT sections (aviation)

• Re≈100,000, Ma ≈0.6

• fred ≈0.7

• Gap sizes: 21.5% (SG) and 43% (LG) rotor chord

• Simulations with O(1014) DOF
(grid independence was found) Sliding plane

Gap



Instantaneous structures (lci=10, coloured by spanwise vorticity)

SG
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Production of turbulence kinetic energy (TKE)

Significantly higher TKE production in SG case 
→ TKE eventually dissipated, leads to entropy generation (loss)
→ increased loss in SG case due to wake distortion

SG LG

Conclusion: halving axial gap increases kinetic loss by 0.25% 

→ increased loss in SG case seen in passage

HPC – High-fidelity simulations LPT



Machine Learning
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Machine-Learning

What does turbulence modelling look like?

High cost of simulations due to need to resolve all turbulence scales 

Solution: do not resolve all the turbulent scales, but model their 
effect on the mean flow

Need model that represents ALL scales of turbulence

Turbulence essentially 
provides extra dissipation 
of energy
→model analogously to 

molecular diffusion



Machine-Learning

What goes wrong in current turbulence modelling?

Linear coupling between turbulent (Reynolds) stress and strain

Linear Reynolds stress models do not capture anisotropy of turbulent flows

– Reynolds stress prevalent in all areas of turbulence models
Scalar that linearly relates 
deviatoric stress to strain rate

Basis functions
(Pope, 1975)

Independent
tensor variables

Unknown coefficients, functions of 
independent variables

With high-fidelity data
try to find zk as functions of
independent variables Ik

How can we improve Reynolds stress model?  

Extend the linear model to include higher order gradients



Machine-Learning (GEP)

How can we find zk that give us best model?

- Want zk symbolically→ interpretable, plug and play

Evolutionary Algorithm- Evolve suitable functions for zk

- Evolutionary concepts borrowed from biology
● survival of the fittest
● incremental improvements via genetic operations (cloning, mutation, crossover)

How do we evolve symbolic expressions that are syntactically correct?

- Gene Expression Programming (GEP) transforms symbols to equations:

Chromosome - list of symbols 
(exists in code)

Expression tree

Predictive model  (valid expression 
- can be nonlinear)

Head – function set Tail – terminal set



Machine-Learning (GEP)

Schematic of evolutionary algorithm:

Evaluate fitness of models

Natural selection

Initialize random 
population

Apply genetic modifications
(mutations, transpositions, 

combinations)

Update population
to next generation

• Set of predictive models (population) is developed over multiple generations to fit the available training data

• The fittest model of the last generation is the training outcome 

• Can do that with tensors and vectors as well (Weatheritt & Sandberg, JCP 2016)



Machine-Learning (GEP)

Model trained 

on HPT data 
at Re=570,000

New  model trained on one data set performs well on all test cases,

at different flow conditions and for different geometries

Standard linear model
(baseline)

Machine-learnt model extension

HPT at Re=1,100,000 LPT at Re=60,000 LPT at Re=100,000

Tested on:

Error reduced by 
factor > 5



Machine-Learning (GEP)

Machine-learning framework applied to heat flux modelling

New models tested on 9 other cases with different 
slot geometries and blowing ratios - 2 examples:

TE slot heat flux models
(Sandberg et al., JoT 2018)

High fidelity
Baseline RANS
EDM on HiFi
Trained HF

EDM:

GEP model:



Ultimate Goal

Simplify

1) Physical insight2) Machine-learn models

More accurate 
design calculations

Use HPC to perform 
Hi-Fi simulations



Thank you for your attention

Questions?
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