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ANALYSING NCI DATA COLLECTIONS

§ The NCI Reference Data Collections are organised in a systematic way to
enable fast programmatic access for analysis across multiple domains.

§ NCI data collections are available for use on NCI’s core computing resources
like NCI supercomputer and NCI cloud-based platforms.

§ NCI established the data analysis environment to help users accessing the
data collections in a scalable programming way.

11 May 2021 1

N
C

I D
at

a 
A

na
ly

sis
 

en
vi

ro
nm

en
t Software Stack: nci_data_analysis module

Middleware: pangeo, Open Ondemand

Compute Resources: Supercomputer and Cloud



TYPICAL NCI DATA ANALYSIS WORKFLOW
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Remote Jupyter job is executing at the
NCI scalable resources.

The job utilizes Dask as the parallel
computing engine.

Users work with their own desktop web
browser to access the remote Jupyter
server.

https://opus.nci.org.au/display/Help/Data+Analy
sis+Environments

https://pangeo.io



SOFTWARE STACK FOR NCI DATA ANALYSIS
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nci-data-analysis/2021.03 module
• 485 general-purpose python

libraries including Jupyter, xarray
and Dask etc.

• periodically updating (~3 months).
• adding more libs per user’s request.



COMPUTE RESOURCES FOR NCI DATA ANALYSIS
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GADI VDI JupyterLab

Description

Australia's peak research 
supercomputer with 4000+ 

compute nodes including 640 
NVIDIA V100 GPUs

Graphical desktop-
like interface based on 
the NCI cloud resource

Jupyter native interface 
which supports scalable 

dask cluster jobs

Hardware/Node 48 CascadeLake CPU cores, 
192 GB memory (normal queue)

16 vCPUs (SandyBridge),
32GB memory

16 vCPUs (SandyBridge), 
32GB memory

Job resources Multiple nodes Single node Multiple nodes
File System Lustre NFS access to Lustre NFS access to Lustre

Internet 
Connection No Yes Yes

Web Browser No Yes Yes

Typical job compute intensive work
data analysis

code development 
visualisation

data analysis



OPEN ONDEMAND (OOD) PLATFORM
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https://vlood-poc.vl.nci.org.au

OOD is an online portal giving you access to compute
resources at NCI such as VDI, Gadi, or Jupyter Lab. It
provides an app based infrastructure which we will
extend as new new apps are developed.

3 apps on the OOD:

• Gadi Terminal: simple browser based access to
Gadi; the session closes when you close your
browser window (or change to another
page). Useful for checking Gadi jobs from a web-
browser etc.

• VDI: Web-browser based VNC connection to a VDI
session (i.e. alternative to Strudel).

• Jupyter Lab: dedicated Jupyter Lab session which
can be used to run Dask workload among others.

Currently at the stage of “Proof of Concept”.

https://opus.nci.org.au/display/~ajr900/Gadi+Terminal+OOD+App
https://opus.nci.org.au/display/~ajr900/VDI+OOD+App
https://opus.nci.org.au/display/~ajr900/Jupyter+Lab+OOD+App


ACCESS GADI VIA OOD
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Pangeo Manual
https://opus.nci.org.au/display/Help/5.+Pangeo+on+Gadi



ACCESS VDI VIA OOD
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ACCESS JUPYTERLAB VIA OOD
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AN EXAMPLE OF SCALABLE ANALYSIS: 
XARRAY AND LABELS
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• NumPy provides the fundamental data structure and API for working with raw ndarrays. 
• Xarray uses metadata in the form of labelled dimensions (e.g., ‘latitude’ or ‘frequency’) and coordinate 

values (e.g., the date ‘2021-02-05’) to enable a suite of expressive, label based operations.
• Can apply operations over dimensions by name: x.sum(‘time’)
• Can select values by label instead of integer location: x.loc[‘2021-02-05’] or x.sel(time=’2021-02- 05’)
• Mathematical operations (e.g. x - y) vectorize across multiple dimensions based on dimension names, not

shape
• split-apply-combine paradigm with groupby, Database-like alignment based on coordinate labels, keep track 

of arbitrary metadata in the form of a Python dictionary: x.attrs, etc.



AN EXAMPLE OF SCALABLE ANALYSIS: 
XARRAY - PARALLEL COMPUTING WITH DASK
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Xarray integrates with Dask to support parallel
computations and streaming computation on datasets
that don’t fit into memory
• Dask divides arrays into many small pieces (chunks),

each of which is presumed to be small enough to fit
into memory so it can provides multi-core and
distributed parallel execution on larger-than-memory
datasets

• Dask scales up (to a cluster) and down (to a single
machine).

• High level collections like Array, Bag, and DataFrame
that mimic NumPy, lists, and Pandas but can operate
in parallel on datasets that don't fit into memory.

• Low Level schedulers with low-latency to execute task
graphs in parallel.



AN EXAMPLE OF SCALABLE ANALYSIS:
BENCHMARK ON A CMIP6 DATA COLLECTION
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import xarray as xr
ds = xr.open_mfdataset(allfiles, chunks={"time":753},combine='by_coords',parallel=True)
len(allfiles)=166              # total number of source NetCDF files.

A model ran by the Alfred Wegener 
Institute, Helmholtz Centre for Polar 
and Marine Research, Am 
Handelshafen 12, 27570 
Bremerhaven, Germany (AWI) in 
native nominal resolutions: atmos: 
100 km, land: 100 km, ocean: 25 km, 
sea Ice: 25 km.



AN EXAMPLE OF SCALABLE ANALYSIS: 
PRECIPITATION FLUX VARIABLE
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The precipitation flux variable has
three dimensions. It is a dask.array
concatenated over all 166 files in this
directory with the total size of 132GiB.
The precipitation flux variable is
recorded every three hours according
to the time stamps above. It’s 660
chunks could be processed in parallel
over the DASK cluster.

ds.pr.nbytes/1e9=142.1829734#size (GB)



AN EXAMPLE OF SCALABLE ANALYSIS: 
TIMESERIES OF MEAN PRECIPITATION FLUX
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pr_mean = ds.pr.mean(dim=('lat','lon’))
pr_full = pr_mean.hvplot(label='full time series dataset from 1850 to 
2014', grid=True,title='mean precipitation flux', width=800, height=400)



AN EXAMPLE OF SCALABLE ANALYSIS: 
PRECIPITATION FLUX VARIABILITY
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pr_std = ds.sel(time=slice("1900-01-01", "2000-12-31")).pr.std(dim='time’)
pr_std.hvplot(colormap='viridis', width=1200, height=550, rasterize=True)

We can examine the 
natural variability in 
precipitation flux by 
looking at its 
standard deviation 
over time.



AN EXAMPLE OF SCALABLE ANALYSIS: 
CODE BLOCK TO ENABLE BENCHMARK
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from dask.distributed import Client
client = Client(scheduler_file='./scheduler.json’)

ds = xr.open_mfdataset(allfiles, chunks={"time":753},
combine='by_coords',parallel=True)

subds=ds.isel(time=slice(slice_beg,slice_end))

pr_mean=subds.pr.mean(dim=('lat','lon’))
pr_mean.compute()

pr_std = subds.pr.std(dim='time’) 
pr_std.compute()



AN EXAMPLE OF SCALABLE ANALYSIS: 
PARALLEL TASKS WITH THE DASK CLUSTER
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xr.open_mfdataset() pr_mean.compute()



AN EXAMPLE OF SCALABLE ANALYSIS: 
PERFORMANCE RESULTS OF OPEN_MFDATASET
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§ 2 Threads per Dask worker

§Nthreads=Ncores

§CPU resources:
§ VDI: 8 cores in a single node.

§ Gadi: 48 cores/node.



AN EXAMPLE OF SCALABLE ANALYSIS: 
PR_MEAN SCALABILITY ON THE SIZE OF TIME SLICES AND CPU
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AN EXAMPLE OF SCALABLE ANALYSIS: 
PR_STD SCALABILITY ON THE SIZE OF TIME SLICES AND CPU
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GPU SUPPORT IN DEVELOPMENT
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https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9797-dask-extensions-and-new-developments-with-rapids.pdf



AN EXAMPLE OF SCALABLE ANALYSIS: 
SINGLE GPU UTLIZATION
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§ Import cupy as cp

§ from dask.distributed import Client

§ client = Client(scheduler_file='./scheduler.json’)

§ ds = xr.open_mfdataset(allfiles,
chunks={"time":753},combine='by_coords',parallel=True)

§ subds=ds.isel(time=slice(slice_beg,slice_end))

§ # Additional step to convert data type from numpy to cupy.

subcds.pr.data = cp.asarray(subcds.pr.data)  # extra convert time cvttime.

§ pr_mean=subds.pr.mean(dim=(‘lat’,‘lon’))

§ pr_mean.compute() # meantime

§ pr_std = subds.pr.std(dim=‘time’)

§ pr_std.compute() #stdtime



AN EXAMPLE OF SCALABLE ANALYSIS: 
GPU BENCHMARK RESULTS
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Walltime(s) 12 CPUs 12 CPUs 1 GPU 1 GPU 1 GPU

size meantime stdtime meantime stdtime Npr_mean Npr_std
10 0.14 0.08 1.63 0.15 1 1

100 0.33 0.34 0.00 0.00 1 1

500 1.31 1.29 0.00 0.01 2 2

1000 2.79 2.17 0.00 0.04 1 1

2000 2.63 2.42 0.00 0.08 1 2

5000 2.77 2.38 0.00 0.21 3 4

8000 2.98 2.20 0.31 0.03 3 4

10000 4.14 4.39 0.00 0.40 3 3

20000 6.28 6.15 0.00 0.81 4 4

50000 14.88 12.02 0.00 2.02 3 4

80000 23.95 19.54 0.00 3.22 4 5

100000 30.44 29.22 1.17 3.65 5 5

Single GPU can accelerate the data analysis workflow with heavy compute operations. 



PATHWAY TOWARDS MULTIPLE GPUS
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§ Set up Dask LocalCUDACluster via dask-cuda library to distribute tasks over
multiple GPUs.

§ No direct way to read NetCDF files to xarray.Dataset crossing multiple GPUs.
§ Convert xarray.Dataset to Dask-cuDF ( can read csv, json, orc, parquet directly).
§ New implementations & developments in DASK+RAPIDS are on the way.



SUMMARY
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NCI set up a data analysis environment by integrating both python
software stack and NCI compute resources. It could help users to
efficiently process large scale datasets in a scalable way with
powerful NCI compute resources.
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NCI Gadi User Guide
https://opus.nci.org.au/display/Help/Gadi+User+Guide

NCI VDI User Guide
https://opus.nci.org.au/display/Help/VDI+User+Guide

NCI Data Analysis Environments
https://opus.nci.org.au/display/Help/Data+Analysis+Environments

Xarray tutorial
https://github.com/NCI-data-analysis-platform/examples-dask.git

Dask tutorial
https://github.com/NCI-data-analysis-platform/examples-xarray.git

Please connect various NCI projects to access the data sources for above tutorials.

Thank you.

https://opus.nci.org.au/display/Help/Gadi+User+Guide
https://opus.nci.org.au/display/Help/VDI+User+Guide
https://opus.nci.org.au/display/Help/Data+Analysis+Environments
https://github.com/NCI-data-analysis-platform/examples-dask.git
https://github.com/NCI-data-analysis-platform/examples-xarray.git

