
NCI'S JUPYTER-PANGEO
ENVIRONMENT FOR

DATA ANALYSIS
DATA SCIENCE WEEK 2021

ANALYSING NCI DATA COLLECTIONS

§ The NCI Reference Data Collections are organised in a systematic way to
enable fast programmatic access for analysis across multiple domains.

§ NCI data collections are available for use on NCI’s core computing resources
like NCI supercomputer and NCI cloud-based platforms.

§ NCI established the data analysis environment to help users accessing the
data collections in a scalable programming way.

11 May 2021 1

N
C

I D
at

a
A

na
ly

sis

en
vi

ro
nm

en
t Software Stack: nci_data_analysis module

Middleware: pangeo, Open Ondemand

Compute Resources: Supercomputer and Cloud

TYPICAL NCI DATA ANALYSIS WORKFLOW

11 May 2021 2

Remote Jupyter job is executing at the
NCI scalable resources.

The job utilizes Dask as the parallel
computing engine.

Users work with their own desktop web
browser to access the remote Jupyter
server.

https://opus.nci.org.au/display/Help/Data+Analy
sis+Environments

https://pangeo.io

SOFTWARE STACK FOR NCI DATA ANALYSIS

11 May 2021 3

nci-data-analysis/2021.03 module
• 485 general-purpose python

libraries including Jupyter, xarray
and Dask etc.

• periodically updating (~3 months).
• adding more libs per user’s request.

COMPUTE RESOURCES FOR NCI DATA ANALYSIS

11 May 2021 4

GADI VDI JupyterLab

Description

Australia's peak research
supercomputer with 4000+

compute nodes including 640
NVIDIA V100 GPUs

Graphical desktop-
like interface based on
the NCI cloud resource

Jupyter native interface
which supports scalable

dask cluster jobs

Hardware/Node 48 CascadeLake CPU cores,
192 GB memory (normal queue)

16 vCPUs (SandyBridge),
32GB memory

16 vCPUs (SandyBridge),
32GB memory

Job resources Multiple nodes Single node Multiple nodes
File System Lustre NFS access to Lustre NFS access to Lustre

Internet
Connection No Yes Yes

Web Browser No Yes Yes

Typical job compute intensive work
data analysis

code development
visualisation

data analysis

OPEN ONDEMAND (OOD) PLATFORM

11 May 2021 5

https://vlood-poc.vl.nci.org.au

OOD is an online portal giving you access to compute
resources at NCI such as VDI, Gadi, or Jupyter Lab. It
provides an app based infrastructure which we will
extend as new new apps are developed.

3 apps on the OOD:

• Gadi Terminal: simple browser based access to
Gadi; the session closes when you close your
browser window (or change to another
page). Useful for checking Gadi jobs from a web-
browser etc.

• VDI: Web-browser based VNC connection to a VDI
session (i.e. alternative to Strudel).

• Jupyter Lab: dedicated Jupyter Lab session which
can be used to run Dask workload among others.

Currently at the stage of “Proof of Concept”.

https://opus.nci.org.au/display/~ajr900/Gadi+Terminal+OOD+App
https://opus.nci.org.au/display/~ajr900/VDI+OOD+App
https://opus.nci.org.au/display/~ajr900/Jupyter+Lab+OOD+App

ACCESS GADI VIA OOD

11 May 2021 6

Pangeo Manual
https://opus.nci.org.au/display/Help/5.+Pangeo+on+Gadi

ACCESS VDI VIA OOD

11 May 2021 7

ACCESS JUPYTERLAB VIA OOD

11 May 2021 8

AN EXAMPLE OF SCALABLE ANALYSIS:
XARRAY AND LABELS

11 May 2021 9

• NumPy provides the fundamental data structure and API for working with raw ndarrays.
• Xarray uses metadata in the form of labelled dimensions (e.g., ‘latitude’ or ‘frequency’) and coordinate

values (e.g., the date ‘2021-02-05’) to enable a suite of expressive, label based operations.
• Can apply operations over dimensions by name: x.sum(‘time’)
• Can select values by label instead of integer location: x.loc[‘2021-02-05’] or x.sel(time=’2021-02- 05’)
• Mathematical operations (e.g. x - y) vectorize across multiple dimensions based on dimension names, not

shape
• split-apply-combine paradigm with groupby, Database-like alignment based on coordinate labels, keep track

of arbitrary metadata in the form of a Python dictionary: x.attrs, etc.

AN EXAMPLE OF SCALABLE ANALYSIS:
XARRAY - PARALLEL COMPUTING WITH DASK

11 May 2021 10

Xarray integrates with Dask to support parallel
computations and streaming computation on datasets
that don’t fit into memory
• Dask divides arrays into many small pieces (chunks),

each of which is presumed to be small enough to fit
into memory so it can provides multi-core and
distributed parallel execution on larger-than-memory
datasets

• Dask scales up (to a cluster) and down (to a single
machine).

• High level collections like Array, Bag, and DataFrame
that mimic NumPy, lists, and Pandas but can operate
in parallel on datasets that don't fit into memory.

• Low Level schedulers with low-latency to execute task
graphs in parallel.

AN EXAMPLE OF SCALABLE ANALYSIS:
BENCHMARK ON A CMIP6 DATA COLLECTION

11 May 2021 11

import xarray as xr
ds = xr.open_mfdataset(allfiles, chunks={"time":753},combine='by_coords',parallel=True)
len(allfiles)=166 # total number of source NetCDF files.

A model ran by the Alfred Wegener
Institute, Helmholtz Centre for Polar
and Marine Research, Am
Handelshafen 12, 27570
Bremerhaven, Germany (AWI) in
native nominal resolutions: atmos:
100 km, land: 100 km, ocean: 25 km,
sea Ice: 25 km.

AN EXAMPLE OF SCALABLE ANALYSIS:
PRECIPITATION FLUX VARIABLE

11 May 2021 12

The precipitation flux variable has
three dimensions. It is a dask.array
concatenated over all 166 files in this
directory with the total size of 132GiB.
The precipitation flux variable is
recorded every three hours according
to the time stamps above. It’s 660
chunks could be processed in parallel
over the DASK cluster.

ds.pr.nbytes/1e9=142.1829734#size (GB)

AN EXAMPLE OF SCALABLE ANALYSIS:
TIMESERIES OF MEAN PRECIPITATION FLUX

11 May 2021 13

pr_mean = ds.pr.mean(dim=('lat','lon’))
pr_full = pr_mean.hvplot(label='full time series dataset from 1850 to
2014', grid=True,title='mean precipitation flux', width=800, height=400)

AN EXAMPLE OF SCALABLE ANALYSIS:
PRECIPITATION FLUX VARIABILITY

11 May 2021 14

pr_std = ds.sel(time=slice("1900-01-01", "2000-12-31")).pr.std(dim='time’)
pr_std.hvplot(colormap='viridis', width=1200, height=550, rasterize=True)

We can examine the
natural variability in
precipitation flux by
looking at its
standard deviation
over time.

AN EXAMPLE OF SCALABLE ANALYSIS:
CODE BLOCK TO ENABLE BENCHMARK

11 May 2021 15

from dask.distributed import Client
client = Client(scheduler_file='./scheduler.json’)

ds = xr.open_mfdataset(allfiles, chunks={"time":753},
combine='by_coords',parallel=True)

subds=ds.isel(time=slice(slice_beg,slice_end))

pr_mean=subds.pr.mean(dim=('lat','lon’))
pr_mean.compute()

pr_std = subds.pr.std(dim='time’)
pr_std.compute()

AN EXAMPLE OF SCALABLE ANALYSIS:
PARALLEL TASKS WITH THE DASK CLUSTER

11 May 2021 16

xr.open_mfdataset() pr_mean.compute()

AN EXAMPLE OF SCALABLE ANALYSIS:
PERFORMANCE RESULTS OF OPEN_MFDATASET

11 May 2021 17

0

20

40

60

80

100

120

140

160

180

8 12 24 48 96 192 384

O
PE

N
_M

FD
A

TA
SE

T
TI

M
E

(S
)

CPU CORES

Gadi VDI

§ 2 Threads per Dask worker

§Nthreads=Ncores

§CPU resources:
§ VDI: 8 cores in a single node.

§ Gadi: 48 cores/node.

AN EXAMPLE OF SCALABLE ANALYSIS:
PR_MEAN SCALABILITY ON THE SIZE OF TIME SLICES AND CPU

11 May 2021 18

0
50
100
150
200
250
300
350
400
450
500

8c
ore
_v
di

8c
ore
_g
ad
i

12
co
re_
ga
di

24
co
re_
ga
di

48
co
re_
ga
di

96
co
re_
ga
di

19
2c
ore
_g
ad
i

38
4c
ore
_g
ad
i

W
A

LL
TI

M
E(

S)

CPU CORES

pr_mean

10 100 500 1k 2k 5k 8k 10k

20k 50k 80k 100k 200k 300k 400k

AN EXAMPLE OF SCALABLE ANALYSIS:
PR_STD SCALABILITY ON THE SIZE OF TIME SLICES AND CPU

11 May 2021 19

0
50
100
150
200
250
300
350
400
450
500

8c
ore
_v
di

8c
ore
_g
ad
i

12
co
re_
ga
di

24
co
re_
ga
di

48
co
re_
ga
di

96
co
re_
ga
di

19
2c
ore
_g
ad
i

38
4c
ore
_g
ad
i

W
A

LL
TI

M
E(

S)

CPU CORES

pr_std

10 100 500 1k 2k 5k 8k 10k

20k 50k 80k 100k 200k 300k 400k

GPU SUPPORT IN DEVELOPMENT

11 May 2021 20

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9797-dask-extensions-and-new-developments-with-rapids.pdf

AN EXAMPLE OF SCALABLE ANALYSIS:
SINGLE GPU UTLIZATION

11 May 2021 21

§ Import cupy as cp

§ from dask.distributed import Client

§ client = Client(scheduler_file='./scheduler.json’)

§ ds = xr.open_mfdataset(allfiles,
chunks={"time":753},combine='by_coords',parallel=True)

§ subds=ds.isel(time=slice(slice_beg,slice_end))

§ # Additional step to convert data type from numpy to cupy.

subcds.pr.data = cp.asarray(subcds.pr.data) # extra convert time cvttime.

§ pr_mean=subds.pr.mean(dim=(‘lat’,‘lon’))

§ pr_mean.compute() # meantime

§ pr_std = subds.pr.std(dim=‘time’)

§ pr_std.compute() #stdtime

AN EXAMPLE OF SCALABLE ANALYSIS:
GPU BENCHMARK RESULTS

11 May 2021 22

Walltime(s) 12 CPUs 12 CPUs 1 GPU 1 GPU 1 GPU

size meantime stdtime meantime stdtime Npr_mean Npr_std
10 0.14 0.08 1.63 0.15 1 1

100 0.33 0.34 0.00 0.00 1 1

500 1.31 1.29 0.00 0.01 2 2

1000 2.79 2.17 0.00 0.04 1 1

2000 2.63 2.42 0.00 0.08 1 2

5000 2.77 2.38 0.00 0.21 3 4

8000 2.98 2.20 0.31 0.03 3 4

10000 4.14 4.39 0.00 0.40 3 3

20000 6.28 6.15 0.00 0.81 4 4

50000 14.88 12.02 0.00 2.02 3 4

80000 23.95 19.54 0.00 3.22 4 5

100000 30.44 29.22 1.17 3.65 5 5

Single GPU can accelerate the data analysis workflow with heavy compute operations.

PATHWAY TOWARDS MULTIPLE GPUS

11 May 2021 23

§ Set up Dask LocalCUDACluster via dask-cuda library to distribute tasks over
multiple GPUs.

§ No direct way to read NetCDF files to xarray.Dataset crossing multiple GPUs.
§ Convert xarray.Dataset to Dask-cuDF (can read csv, json, orc, parquet directly).
§ New implementations & developments in DASK+RAPIDS are on the way.

SUMMARY

11 May 2021 24

NCI set up a data analysis environment by integrating both python
software stack and NCI compute resources. It could help users to
efficiently process large scale datasets in a scalable way with
powerful NCI compute resources.

11 May 2021 25

NCI Gadi User Guide
https://opus.nci.org.au/display/Help/Gadi+User+Guide

NCI VDI User Guide
https://opus.nci.org.au/display/Help/VDI+User+Guide

NCI Data Analysis Environments
https://opus.nci.org.au/display/Help/Data+Analysis+Environments

Xarray tutorial
https://github.com/NCI-data-analysis-platform/examples-dask.git

Dask tutorial
https://github.com/NCI-data-analysis-platform/examples-xarray.git

Please connect various NCI projects to access the data sources for above tutorials.

Thank you.

https://opus.nci.org.au/display/Help/Gadi+User+Guide
https://opus.nci.org.au/display/Help/VDI+User+Guide
https://opus.nci.org.au/display/Help/Data+Analysis+Environments
https://github.com/NCI-data-analysis-platform/examples-dask.git
https://github.com/NCI-data-analysis-platform/examples-xarray.git

