ANUGA CDAC

Team Members

Stephen Roberts ANU

Ole Nielsen

Samir Shaikh C-DAC, India

Samrit Maity C-DAC, India

Shweta Das C-DAC, India

Jayashri Pawar C-DAC, India

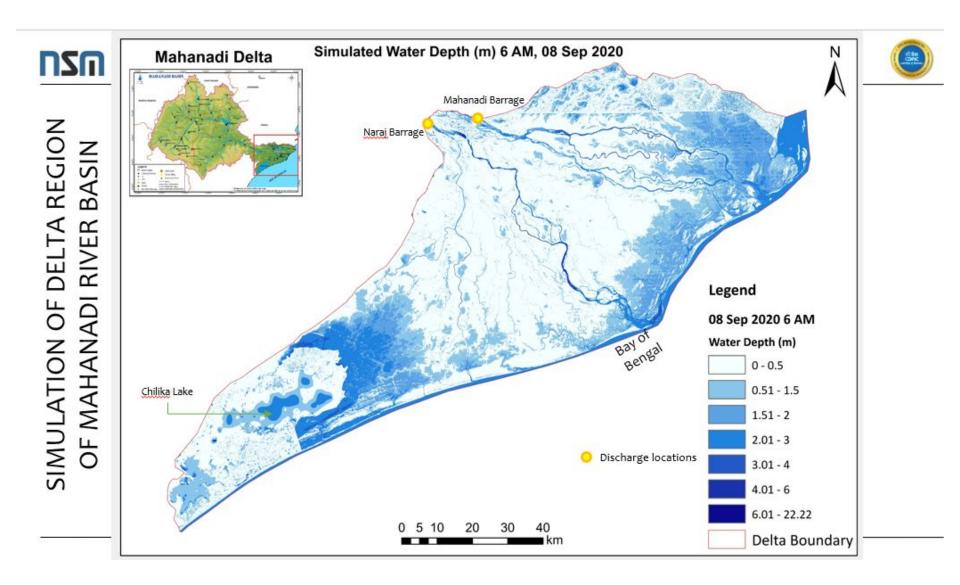
Shashank Sharma C-DAC, India

Rudi Prihandoko ANU

Mentors

Bharat Kumar NVIDIA

Max Rietmann

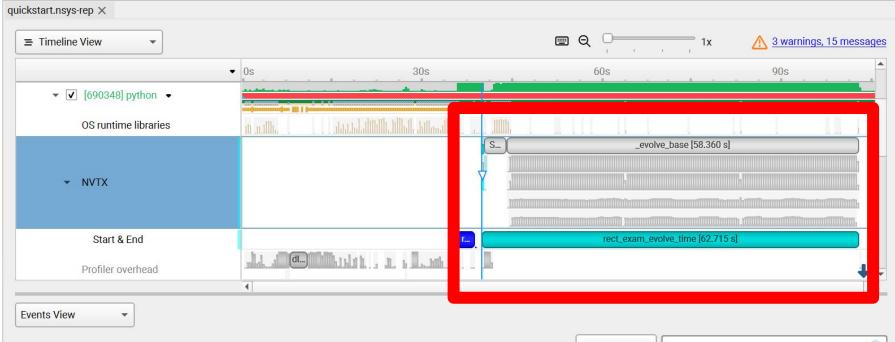

ANUGA

- About application
 - ANUGA is a Free & Open Source Software (FOSS) package capable of modelling the impact of hydrological disasters such as dam breaks, riverine flooding, storm-surge or tsunamis. ANUGA is based on the Shallow Water Wave Equation discretised to unstructured triangular meshes using a finite-volumes numerical scheme.
- Problem trying to solve
 - Identifying the performance bottleneck of the Legacy ANUGA application
 - Porting ANUGA to GPU architecture

ANUGA

- Scientific driver for the chosen algorithm
 - The end users of ANUGA application needs flood simulation to be performed in less time
 - Theses simulation need to cover larger domain areas, such as full river basin
 - The application execution should take less time and fewer compute resources
- What parts are you focusing on?
 - We profiled the code with Nsight to identify the compute-intensive section of the algorithm.
 - Based on our finding, we worked on two major subroutines
 - Flux calculation subroutine
 - Extrapolation subroutine

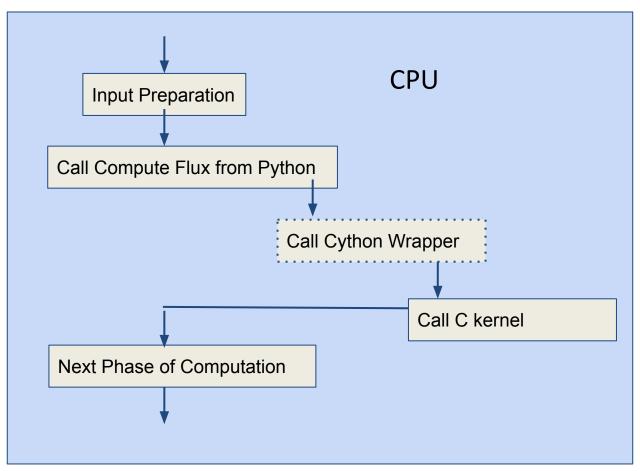
ANUGA



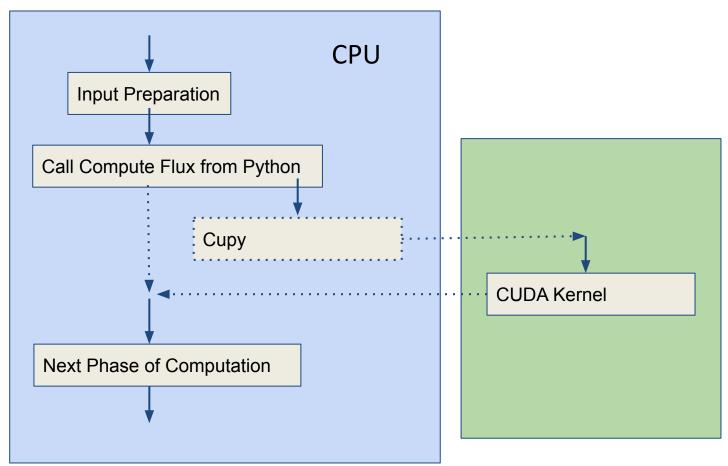
Profiler Output: Before

2/4] [=== 2/4] [=== 2/4] [=== 2/4] [===]q]q]q ==91%]q ===91%]q ====100%]q	uickstart.sqlit	e e e e						~	26		Ø		
Time (%)	Total Time (ns)	Instances	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Style	Range		· · ·				
 ۲۵۰}	62715084442	1	62715084442.0	62715084442.0	62715084442	62715084442	0.0	StartEnd	rect exam evolve time						
18.3	58359902587	1	58359902587.0	58359902587.0	58359902587	58359902587	0.0	PushPop	evolve base						
10.7	33162878002	149	222569651.0	224400904.0	209315261	241548587	6022876.9	PushPop	extrapolate						
20.3 18.3 10.7 10.7	33153794047	149	222508684.9	224342342.0	209252052	241488398	6022411.7	PushPop	_extrapolate_second_order_edge_sw						
10.4	32201808812	144	223623672.3	225467237.0	210794551	242806792	5898630.2		distribute_to_vertices_and_edges	6	and the second second second second				
2.0	27915571461	149	187352828 6	189307128 0	173003815	200040136	5688568 9		extrapolate second order edge	w_extra	polatio	n_routir	19		
7.0	21699368652	144	150690060.1	149798524.0	148400552	181464682	3697829.6		compute_fluxes						
7.0	21687955697	144	150610803.5	149716801.5	148305646	181389463	3698170.0	PushPop	Compute Fluxes Central						
1.7	5174395514	200	1/966651.1	11110023.5	17512919	23396679	838668.3	PushPop	-update_conserved_quantities						
1.3	4100338933	1	4100338933.0	4100338933.0	4100338933	4100338933		PushPop	SWW_ile						
1.2	3797005952	149	25483261.4	24904708.0	24728355	45758794	2379508.4		e.trapola_e_second_order_edge_s	sw_comput	t_ver_v	al_			
1.0	2947345897	1	2947345897.0	2947345897.0	2947345897	2947345897	0.0								
0.2	652362427	149	4378271.3	4308527.0	4268130	7389729	362159.3		<pre>extrapolate_second_order_edge_s</pre>	sw_if_ve	l_order	_1			
0.2	535748454	4	133937113.5	134562508.5	121602384	145021053	9940621.9		store_time tep						
0.1	451937600	149	3033138.3	3007161.0	2903171	4141079	149381.8		_e trapola e_second_order_edge_s			L			
0.1	325426090	149	2184067.7	2084617.0	2078135	8285004	633222.6		_ettrapola_e_second_order_edge_s	sw_mem_a					
0.1	236989633	144	1645761.3	1607629.0	1585220	2536357	153780.8		uplate_bou dary						
0.1	194956946	149	1308435.9	1263787.0	1227534	6960216	467606.4		<pre>protect_ag inst_infinities</pre>						
0.1	194257909	149	1303744.4	1259515.0	1224134	6950903	467233.8		protect_net						
0.0	141477230	144	982480.8	951819.5	932935	2300597	192734.1		conpute_fo_cing_terms						
0.0	1485506	144	10316.0	9809.5	8543	29234	2154.4		uplate_tim_step						
0.0	106186	144	737.4	586.0	451	5105	676.6		conpute_flex_update_frequency						
0.0	13705	1	13705.0	13705.0	13705	13705	0.0	StartEnd	rectangutar_exam_domain_distr						

4/4] Executing 'osrtsum' stats repor


Profiler Output: Before

			Name	•	0
#	▲ Name	Start	Duration	TID	Description:
8	<pre></pre>	40.1266s	8.285 ms	690348	_extrapolate_second_order_edge_
9	<pre></pre>	40.1348s 5.559 ms		690348	sw_extrapolation_routine
10	_extrapolate_second_order_edge_sw_surr_dry_cell	40.1404s	4.141 ms	690348	Begins: 40.1446s Ends: 40.3192s (+174.532 ms)
11	_extrapolate_second_order_edge_sw_extrapolation_routine	40.1446s	174.532 ms	690348	Thread: 690348
12	<pre></pre>	40.3192s	45.759 ms	690348	
13	SWW_file	40.3651s	4.100 s	690348	
14	evolve_base	44.4654s	58.360 s	690348	
•					


ANUGA Structure

Legacy Structure

ANUGA Structure

Proposed Compute Pattern

Evolution and Strategy

• What was your initial strategy?

- Attempted parallel strategy for porting the compute-intensive part using both CuPy and OpenACC
- How did this strategy change?
 - We realized that due to time constraints, it would be more feasible to target a single key kernel and port it to both CuPY and OpenACC

import cupy as cp nvtxRangePush('to gpu') gpu local timestep = cp.array(local timestep) #TnOut gpu_boundary_flux_sum = cp.array(boundary_flux_sum) #TnOut gpu_max_speed = cp.array(max speed) #InOut gpu stage explicit update = cp.array(stage explicit update) #InOut gpu xmom explicit update = cp.array(xmom explicit update) #InOut gpu ymom explicit update = cp.array(ymom explicit update) #InOut

Results and Final Profile

• What were you able to accomplish?

- Refactoring, Refactoring and Refactoring
- Able to integrate CuPy into top kernel for flux calculation subroutine
- Kernel for extrapolate subroutine is ready to be integrated with ANUGA
- Did you achieve speed up?
 - Computer kernel execution time 135 Milisec on CPU, 2.3 Milisec on GPU (more than 60x speed up)
 - Datatransfer back and forth to GPU should be looked into.
- What did you learn?
 - Application profiling
 - how to applying nvtx marker
 - how analyse output on Nsight tool and identify performance bottleneck section of code.
 - Plugging Cupy with existing Python based application.
 - CUDA architecture know-how

Results and Final Profile

ect 1 × report1.nsys-rep × report2.nsys-rep × • Timeline View • • 13s • 0ms +700ms • 13s • 0ms +700ms • 13s • 0ms +700ms	Tx A 2 warnings, 14 messages +100ms +200ms ▲
Timeline View Image: Constraint of the second	
13s ▼ ^{Dms} +700ms +800ms 13s 914.5ms 14s	
CUDA HW (000:b1:00.0 - Tesla V 5.9% Kernels 94.1% Memory NVTX Threads (10) v [1421613] python • NVTX to gpu [142.703 ms] NVTX to gpu [745.208 ms] ents View	fr
Name Right-click a timeline row and select "Show in Events View" to see events here	Description:
Tŀ ·	5.9% Kernels 94.1% Memory NVTX compute fluxes domain2 [479.084 ms] to gpu [142.703 ms] reads (10) 2 [1421613] python Compute fluxes domain2 [1.087 s] NVTX to gpu [745.208 ms] NVTX Name

What problems have you encountered?

- Problems with legacy app structure
 - Legacy code having complex structure
 - Python Cython C function call
- Tool lack of features:
 - Better documentation for integrating "profiling markers" into complex code structure (Python -> Cython -> C).
 - There is no AtomicMin (AtomicMax) for double in CUDA programming
- System setup:
 - Suggesting to have important packages like CuPy and GDAL as modules or recipes in conda environment on GADI System

Wishlist

- What do you wish existed to make your life easier?
 - Event Thank you all for perfect execution of event.
 - Tools
 - Need power supply (and/or extension) that can accommodate participants, especially availability of "international power adapter"
 - Systems
 - Having a login node that could do computation for small scale testing
 - Standard practice or guideline for the process of converting C code to CUDA code
 - A detailed tutorial that covers the process of profiling a scientific Python application using NVIDIA tools on an HPC (High-Performance Computing) facilitation

Was it worth it?

- Was this worth it? Yes, of course
- Will you continue development?
 - Certainly. We will continue porting exercise till goal is achieved and end users requirements are met.
 - Working on OpenACC
 - Try to optimize further
- What sustained resources/support will be critical for your work after the event?
 - Wish to continue working with mentors
 - Prolonged access to GADI system with GPU Resource

Team's achievements during this Hackathon

Refactoring, Refactoring, Refactoring. But where?

- We performed profiling of the ANUGA code and identified certain parts that take up a significant amount of time and require optimization.
- Delve deeper into the profiling, with NVIDIA Nsight System and examined the innermost loop of the program.
- We had to prioritize which part was the most critical and could be ported to CuPy and OpenACC within the given time frame of the hackathon.
- Successfully ported the flux calculation subroutine within the main loop of ANUGA to be compatible with CuPy and OpenACC.

PROMOTING YOUR WORK: AVAILABLE OPPORTUNITIES

 Papers and Talks: Please acknowledge the Open Hackathons program and OpenACC Organization in any planned or upcoming papers, presentations, or talks.

"This work was completed in part at the NCI Open Hackathon, part of the Open Hackathons program. The authors would like to acknowledge OpenACC-Standard.org for their support."

- Social Media Support: Please feel free to promote your participation across your social media channels. Tag @OpenACCorg and #OpenHackathons and we are happy to amplify.
- Blogs and Technical Write-ups: Create a blog post or technical article that highlights the work being done and results achieved.
- Quotes and Testimonials: Highlight your quote or feedback on our channels (i.e. social, website, etc.).

***Please reach out to Izumi Barker (<u>ibarker@nvidia.com</u>) to discuss marketing options and opportunities.