
ANUGA CDAC

Stephen Roberts
ANU

Team Members

Samir Shaikh
C-DAC, India

Ole Nielsen

Samrit Maity
C-DAC, India

Shweta Das
C-DAC, India

Jayashri Pawar
C-DAC, India

Shashank Sharma
C-DAC, India

Rudi Prihandoko
ANU

Mentors

Bharat Kumar
NVIDIA Max Rietmann

ANUGA
• About application

– ANUGA is a Free & Open Source Software (FOSS) package capable of modelling

the impact of hydrological disasters such as dam breaks, riverine flooding,

storm-surge or tsunamis. ANUGA is based on the Shallow Water Wave Equation

discretised to unstructured triangular meshes using a finite-volumes numerical

scheme.

• Problem trying to solve

– Identifying the performance bottleneck of the Legacy ANUGA application

– Porting ANUGA to GPU architecture

ANUGA
• Scientific driver for the chosen algorithm

– The end users of ANUGA application needs flood simulation to be performed in

less time

– Theses simulation need to cover larger domain areas, such as full river basin

– The application execution should take less time and fewer compute resources

• What parts are you focusing on?
– We profiled the code with Nsight to identify the compute-intensive section

of the algorithm.

– Based on our finding, we worked on two major subroutines

• Flux calculation subroutine

• Extrapolation subroutine

ANUGA

Profiler Output: Before

Profiler Output: Before

ANUGA Structure
Legacy Structure

Input Preparation

Call Compute Flux from Python

Call Cython Wrapper

Call C kernel

Next Phase of Computation

CPU

ANUGA Structure
Proposed Compute Pattern

Input Preparation

Call Compute Flux from Python

Cupy

Next Phase of Computation

CPU

CUDA Kernel

Evolution and Strategy

• What was your initial strategy?

– Attempted parallel strategy for porting
the compute-intensive part using both
CuPy and OpenACC

• How did this strategy change?

– We realized that due to time
constraints, it would be more feasible
to target a single key kernel and port it
to both CuPY and OpenACC

Results and Final Profile

● What were you able to accomplish?
○ Refactoring, Refactoring and Refactoring

○ Able to integrate CuPy into top kernel for flux calculation subroutine
○ Kernel for extrapolate subroutine is ready to be integrated with ANUGA
○ Did you achieve speed up?

■ Computer kernel execution time - 135 Milisec on CPU, 2.3 Milisec on GPU
(more than 60x speed up)

■ Datatransfer back and forth to GPU should be looked into.

● What did you learn?

– Application profiling

• how to applying nvtx marker

• how analyse output on Nsight tool and identify performance bottleneck
section of code.

• Plugging Cupy with existing Python based application.

• CUDA architecture know-how

Results and Final Profile

What problems have you encountered?

• Problems with legacy app structure
– Legacy code having complex structure

– Python - Cython - C function call

• Tool lack of features:

– Better documentation for integrating “profiling markers” into complex code

structure (Python -> Cython -> C).

– There is no AtomicMin (AtomicMax) for double in CUDA programming

• System setup:

– Suggesting to have important packages like CuPy and GDAL as modules or

recipes in conda environment on GADI System

Wishlist

• What do you wish existed to make your life easier?

– Event - Thank you all for perfect execution of event.

– Tools

• Need power supply (and/or extension) that can accommodate participants,

especially availability of “international power adapter”

– Systems

• Having a login node that could do computation for small scale testing

– Standard practice or guideline for the process of converting C code to CUDA code

– A detailed tutorial that covers the process of profiling a scientific Python application

using NVIDIA tools on an HPC (High-Performance Computing) facilitation

Was it worth it?
• Was this worth it? Yes, of course

• Will you continue development?

– Certainly. We will continue porting exercise till goal is achieved and end
users requirements are met.

– Working on OpenACC

– Try to optimize further

• What sustained resources/support will be critical for your work
after the event?
– Wish to continue working with mentors
– Prolonged access to GADI system with GPU Resource

Team’s achievements during this Hackathon

Refactoring, Refactoring, Refactoring. But where?

• We performed profiling of the ANUGA code and identified certain parts that take

up a significant amount of time and require optimization.

• Delve deeper into the profiling, with NVIDIA Nsight System and examined the

innermost loop of the program.

• We had to prioritize which part was the most critical and could be ported to CuPy

and OpenACC within the given time frame of the hackathon.

• Successfully ported the flux calculation subroutine within the main loop of

ANUGA to be compatible with CuPy and OpenACC.

PROMOTING YOUR WORK: AVAILABLE
OPPORTUNITIES

● Papers and Talks: Please acknowledge the Open Hackathons program and

OpenACC Organization in any planned or upcoming papers, presentations, or

talks.

“This work was completed in part at the NCI Open Hackathon, part of the

Open Hackathons program. The authors would like to acknowledge

OpenACC-Standard.org for their support.”

● Social Media Support: Please feel free to promote your participation across

your social media channels. Tag @OpenACCorg and #OpenHackathons and we

are happy to amplify.

● Blogs and Technical Write-ups: Create a blog post or technical article that

highlights the work being done and results achieved.

● Quotes and Testimonials: Highlight your quote or feedback on our channels

(i.e. social, website, etc.).

***Please reach out to Izumi Barker (ibarker@nvidia.com) to discuss
marketing options and opportunities.

mailto:ibarker@nvidia.com

