ANUGA CDAC

Team Members

Stephen Roberts BN Shweta Das
ANU C-DAC, India

i Jayashri Pawar
Ole Nielsen C-DAC. India
Samir Shaikh ghgz*gr}‘; (ﬁgarma
C-DAC, India . = ’
Samrit Maity ‘ Rudi Prihandoko
C-DAC, India ANU

Mentors

@ Bharat Kumar
, 4 NVIDIA {

@
4
N

Max Rietmann

ANUGA

e About application

— ANUGA is a Free & Open Source Software (FOSS) package capable of modelling
the impact of hydrological disasters such as dam breaks, riverine flooding,
storm-surge or tsunamis. ANUGA is based on the Shallow Water Wave Equation
discretised to unstructured triangular meshes using a finite-volumes numerical

scheme.

* Problem trying to solve

— ldentifying the performance bottleneck of the Legacy ANUGA application
— Porting ANUGA to GPU architecture

ANUGA

 Scientific driver for the chosen algorithm

~ The end users of ANUGA application needs flood simulation to be performed in
less time

- Theses simulation need to cover larger domain areas, such as full river basin

- The application execution should take less time and fewer compute resources

 What parts are you focusing on?
- We profiled the code with Nsight to identify the compute-intensive section
of the algorithm.
- Based on our finding, we worked on two major subroutines
« Flux calculation subroutine
- Extrapolation subroutine

nsnni

SIMULATION OF DELTA REGION

OF MAHANADI RIVER BASIN

ANUGA

Mahanadi Delta Simulated Water Depth (m) 6 AM, 08 Sep 2020 N

08 Sep 2020 6 AM
Water Depth (m)

' Discharge locations

B co: 2222
0 510 20 30 40
O — — kT | Delta Boundary

Profiler Output: Before

quickstart.sqlite
quickstart.sqglite
quickstart.sqlite
quickstart.sqlite
quickstart.sqlite
quickstart.sqlite
quickstart.sqlite
[3/4] Executing 'nvtxsum' stats report

Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Style Range
StartEnd rect_exam_evolve_time

PushPop _evolve_base

PushPop extrapolate

PushPop

PushPop

BuchBPon routine
PushPop

PushPop Compute Fluxes Central

Pushitop GPAGTaNCORSErVELqUaTTTEES

PushPop SWW e

PushPop _eintrapolate_second_order_edge_sw_comput_ver_val_
StartEnd sect_example.creat_time

PushPop extrapolate s>cond_order_edge sw_1if_vel_order_1
PushPop sthre_times tep

PushPop _e(trapola’ e_second_order_edge_sw_surr_dry_cell
PushPop _e(trapola e_second_order_edge_sw_mem_alloc
PushPop up late_boul dary

PushPop protect_ag: inst_infinities

PushPop protect_ne

PushPop copute_folcing_terms

PushPop up late_timcstep

PushPop copute_flix_update_frequency

StartEnd recianyuiar_exam_domain_distr

62715084442 1 62715084442.0 62715084442. 62715084442 62715084442 0
58359902587 1 58359902587.0 58359902587. 58359902587 58359902587 0.
33162878002 149 222569651. 224400904. 209315261 241548587 6022876.
33153794047 149 222508684 . 224342342. 209252052 241488398 6022411
32201808812 144 223623672.: 225467237. 210794551 242806792 5898630.
27015871461 249 180207122 _0 2000404136 5622568
21699368652 144 150690060. 149798524. 148400552 181464682 3697829.
21687955697 144 150610803. 149716801. 148305646 181389463 3698170.

‘U.
18.
10.
10.
10.

B

ONNOOoO

4100338933 1 4100338933.
3797005952 149 25483261.
2947345897 1 2947345897.
652362427 149 4378271.
535748454 4 133937113
451937600 149 3033138.
325426090 149 2184067.
236989633 144 1645761.
194956946 149 1308435.
194257909 149 1303744.
141477230 144 982480.
1485506 144 10316.
106186 144 437
13705 1 13705.

4100338933. 4100338933 4100338933 0
24904708. 24728355 45758794 2379508.
2947345897. 2947345897 2947345897 0
4308527. 4268130 7389729 362159.
134562508. 121602384 145021053 9940621.
3007161. 2903171 4141079 149381.
2084617. 2078135 8285004 633222.
1607629. 1585220 2536357 153780.
1263787. 1227534 6960216 467606 .
12595153 1224134 6950903 467233.
951819. 932935 2300597 192734.
9809. 8543 29234 2154.

586. 451 5105 676.

13705. 13705 13705 0

COOORPFPPEPPPEPNNONWSIOO DN
PO PLPOWNWUWOEORDHURL,DDWOD
QOLRPOLPODOOODOWOLDLOO

75
7
2
1.
s
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

[4/4] Executing 'osrtsum' stats report

Profiler Output: Before

quickstart.nsys-rep X

[= Timeline View - Q U——— i /\ 3warnings, 15 messages

r Y
‘ m

v |0s 30s 60s 90s

v [v] [690348] python

0S runtime libraries

_evolve_base [58.360 s]

lH!iHIIIIIIIIIHl\!iHIIIIIIIIIHH!HHIIIIIIIHHIHHIIIIIIIIIH\\!lHIIIIIIIHH\\!HHIIIIIIHHH!HHIIIIIIIHl\!!HHIIIIIIIHH!HHIIIIIIIHH}
y1llIl!lIlIHlIl!llllll!lIlllllIl!llllll!IIlllllI1hillJl!IIlllllIl!llllll!IIllllIIl!lllll}lIIlHlIIli11lll!lIIHllIIHHHI!IIIMHIIHHHHHIHHIIH

Start & End

Profiler overhead

Events View v
Name v
- Name Start Duration | TID | Description:
[} s [l _extrapolate_second_order_edge_sw_mem_alloc 40.1266s 8.285ms 690348 _extrapolate_second_order_edge._
[o [| _extrapolate_second_order_edge_sw_if_vel_order_1 40.1348s 5.559 ms 690348 gw__exnzgt?llﬂlgnjoutlne
‘ egins: 40.1446s

[10 [] _extrapolate_second_order_edge_sw_surr_dry_cell 40.1404s 4141 ms 690348 " Ends: 40.3192s (+174.532 ms)

M = | _extrapolate_second_order_edge_sw_extrapolation_routine | 40.1446s 174.532 ms 690348 Thread: 690348

[} 12 [] _extrapolate_second_order_edge_sw_comput_ver_val_ 40.3192s 45.759 ms 690348

M 13 [sww_file 40.3651s 4100s 690348

M 14 » [] _evolve_base 44.4654s 58.360 s 690348

ANUGA Structure

Legacy Structure

'

Input Preparation

v

CPU

Call Compute Flux from Python
|

Call Cython Wrapper

.................... l

l Call C kernel

Next Phase of Computation

:

ANUGA Structure

Proposed Compute Pattern

| CPU

Input Preparation

v

Call Compute Flux from Python
- |

Next Phase of Computation

:

-1 CUDA Kernel

Evolution and Strategy

* What was your initial strategy?

Attempted parallel strategy for porting
the compute-intensive part using both
CuPy and OpenACC

* How did this strategy change?

We realized that due to time
constraints, it would be more feasible
to target a single key kernel and port it
to both CuPY and OpenACC

import cupy as cp

nvtxRangePush('to gpu')

gpu_local timestep = cp.array(local_timestep)
gpu_boundary_ flux_sum = cp.array(boundary_flux_sum)
gpu_max_speed = cp.array(max_speed)

gpu_stage_explicit_update = cp.array(stage_explicit_update)
gpu_xmom_explicit_update = cp.array(xmom_explicit_update)
gpu_ymom_explicit_update = cp.array(ymom_explicit_update)

kernel((NO_OF _BLOCKS, @, @), \
(THREADS_PER_BLOCK, 0, 0), \
\

gpu_local_timestep, \
gpu_boundary_flux_sum, \
gpu_max_speed, \
gpu_stage_explicit_update,\
gpu_xmom_explicit_update,\
gpu_ymom_explicit_update,\
gpu_stage_centroid_values,\
gpu_stage_edge_values,\
gpu_xmom_edge_values, \

gpu_ymom_edge values,\

#InOut
#InOut
#InOut
#InOut
#InOut
#InOut

Results and Final Profile

e \What were you able to accomplish?

O

©)
©)
©)

Refactoring, Refactoring and Refactoring
Able to integrate CuPy into top kernel for flux calculation subroutine
Kernel for extrapolate subroutine is ready to be integrated with ANUGA
Did you achieve speed up?
m Computer kernel execution time - 135 Milisec on CPU, 2.3 Milisec on GPU
(more than 60x speed up)
m Datatransfer back and forth to GPU should be looked into.

What did you learn?
— Application profiling

* how to applying nvix marker

* how analyse output on Nsight tool and identify performance bottleneck
section of code.

* Plugging Cupy with existing Python based application.

e CUDA architecture know-how

Results and Final Profile

NVIDIA Nsight Systems 2023.2.1 - O X
File View Tools Help
Project Explorer X | Project1 X reportl.nsys-rep X [ENSREEEE
= Project 1 B LF ' i
B quickstart.nsys-rep = Timeline View v | Q- 3 1x /A 2warnings, 14 messages
B report1.nsys-rep 13s » Jms +700ms +800ms 14s +100ms +200ms ~
T e PSP ety (Y (N PP <1~ oA MR VPR by e iR PP -t
» CPU (96)
~ CUDA HW (0000:b1:00.0 - Tesla V' LI T TFTI mn

» 5.9% Kernels

EEET w ik Il
-

NVTX
[to gpu [142.703 ms]]

compute fluxes domain2 [479.084 ms]

v Threads (10)

~ |V [1421613] python =

compute fluxes domain2 [1.087 s]

NVTX 2 to gpu [745.208 ms]]

Events View ~

| Name - \[A

Description:

Right-click a timeline row and select "Show in Events View" to see events here

What problems have you encountered?

* Problems with legacy app structure
— Legacy code having complex structure
— Python - Cython - C function call

* Tool lack of features:

— Better documentation for integrating “profiling markers” into complex code
structure (Python -> Cython -> C).

— There is no AtomicMin (AtomicMax) for double in CUDA programming

* System setup:

— Suggesting to have important packages like CuPy and GDAL as modules or

recipes in conda environment on GADI System

Wishlist

 What do you wish existed to make your life easier?

— Event - Thank you all for perfect execution of event.

— Tools

* Need power supply (and/or extension) that can accommodate participants,
especially availability of “international power adapter”

— Systems

* Having a login node that could do computation for small scale testing

— Standard practice or guideline for the process of converting C code to CUDA code

— A detailed tutorial that covers the process of profiling a scientific Python application
using NVIDIA tools on an HPC (High-Performance Computing) facilitation

Was it worth it?

 Was this worth it? Yes, of course

* Will you continue development?
— Certainly. We will continue porting exercise till goal is achieved and end
users requirements are met.

— Working on OpenACC
— Try to optimize further

* What sustained resources/support will be critical for your work

after the event?
— Wish to continue working with mentors
— Prolonged access to GADI system with GPU Resource

Team’s achievements during this Hackathon

Refactoring, Refactoring, Refactoring. But where?

We performed profiling of the ANUGA code and identified certain parts that take
up a significant amount of time and require optimization.

Delve deeper into the profiling, with NVIDIA Nsight System and examined the
innermost loop of the program.

We had to prioritize which part was the most critical and could be ported to CuPy
and OpenACC within the given time frame of the hackathon.

Successfully ported the flux calculation subroutine within the main loop of
ANUGA to be compatible with CuPy and OpenACC.

PROMOTING YOUR WORK: AVAILABLE
OPPORTUNITIES

Papers and Talks: Please acknowledge the Open Hackathons program and
OpenACC Organization in any planned or upcoming papers, presentations, or
talks.
“This work was completed in part at the NCI Open Hackathon, part of the
Open Hackathons program. The authors would like to acknowledge
OpenACC-Standard.org for their support.”
Social Media Support: Please feel free to promote your participation across
your social media channels. Tag @OpenACCorg and #OpenHackathons and we
are happy to amplify.
Blogs and Technical Write-ups: Create a blog post or technical article that
highlights the work being done and results achieved.
Quotes and Testimonials: Highlight your quote or feedback on our channels
(i.e. social, website, etc.).

***Please reach out to lzumi Barker (ibarker@nvidia.com) to discuss
marketing options and opportunities.

mailto:ibarker@nvidia.com

