CompEcon

Team Members

Shu Hu (ANU) Wending Liu (ANU) Chien Yeh (ANU)

Mentors

Aswin Kumar (NVIDIA) Joseph John (ANU)

Solving 3D dynamic optimization problems in economics

Agents choose c consumptions and h working hours to optimize the following utility.

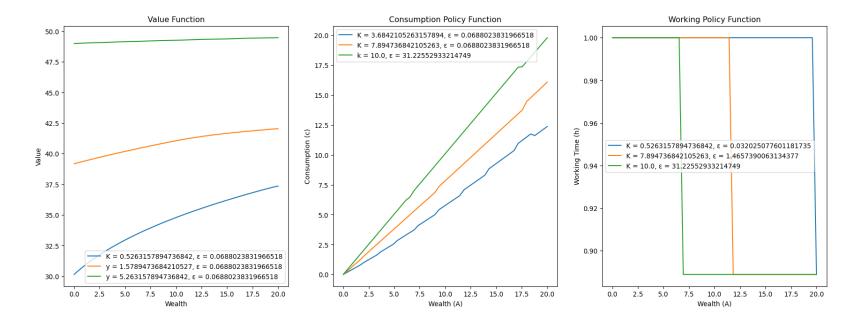
$$\sum_{t=0}^\infty eta^t u(c_t,h_t) = \sum_{t=0}^\infty eta^t [rac{c^{1-\gamma}-1}{1-\gamma}-rac{h^a}{a}]$$

where β is discount factor, γ is risk aversion parameter, and a>0.

Given asset A and human capital K, the consumptions and working hours follow the constraints

$$A_{t+1} = (1+r)A_t + RK_th_t - C_t$$

Solving 3D dynamic


Given R, r we solve

$$V(A_t,K_t,\epsilon_t) = \sup_{h_t,c_t} \left\{ rac{c^{1-\gamma}}{1-\gamma} - rac{h^a}{a} + eta \mathbb{E}_t V(A_{t+1},K_{t+1},\epsilon_{t+1})
ight\}$$

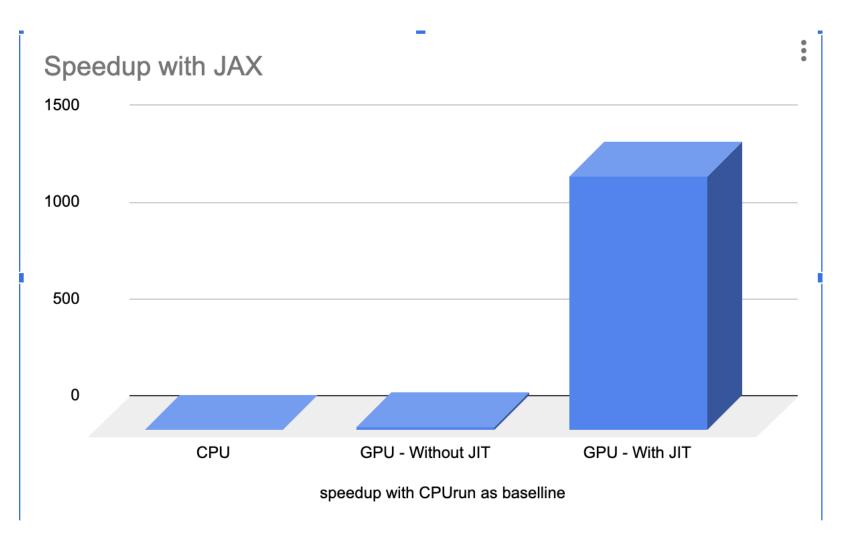
where

$$egin{aligned} \epsilon_{t+1}&=
ho\epsilon_t+\sigma\eta_{t+1} ext{, where }\eta\sim N(0,\eta),\ 0&\leq h_t\leq 1,\ 0&\leq A_{t+1}\leq A_t. \end{aligned}$$

Main result

Our App

- Algorithic Motif: Value Function Iteration on 3D Grids.
- Libraries: NumPy, JAX.
- Language: Python.
- Focus: Parallezing Value Function Iteration (VFI) solver.
- GPU port path: CUDA, JAX.


What we did during hackathon

- Finalized the model
- Implemented a new solver using Numpy
- Port the code to Gadi
- Profiling and analyse nsys profile
- Parallelised the code with jax
- Tried to use jax.pmap
 - $\circ~$ Working only on one thred

Goals

To build an efficient VFI solver which is useful for research in economics.

Performance Results

INPUTS		
# CPU Cores	12	
# GPUs (A100)	1	
Application Speedup	1315.0x	

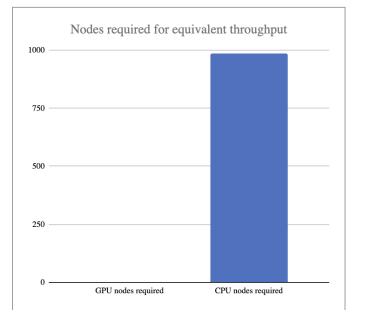
Node Replacement

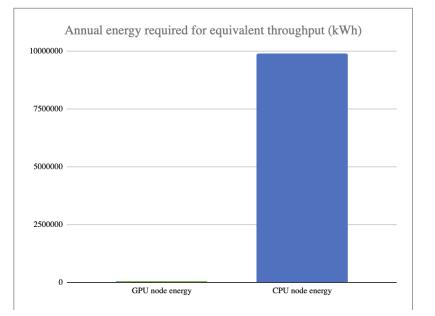
986.3x

GPU NODE POWER SAVINGS					
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings		
Compute Power (W)	1,084,875	6,500	1,078,375		
Networking Power (W)	45,798	93	45,705		
Total Power (W)	1,130,673	6,593	1,124,080		

Node Power efficiency

171.5x

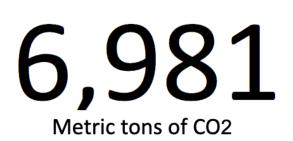

ANNUAL ENERGY SAVINGS PER GPU NODE				
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings	
Compute Power (kWh/year)	9,503,505	56,940	9,446,565	
Networking Power (kWh/year)	401,192	814	400,379	
Total Power (kWh/year)	9,904,697	57,754	9,846,944	


\$/kWh Annual Cost Savings 3-year Cost Savings

\$ 0.34
\$ 3,347,960.91
\$ 10,043,882.74

Metric Tons of CO2 Gasoline Cars Driven for 1 year Seedlings Trees grown for 10 years

6,981
1,507
115,406



115,40(

Trees growing for 10 years

