The ACCESS CM2 and ESM 1.5 climate models and CMIP6

Martin Dix: CSIRO Climate Science Centre
Australian Community Climate and Earth System Simulator

National effort since 2005
- All timescales, weather to climate
- Local and imported components
- CSIRO, BoM, Universities
- NCI

Support from
- NESP Earth System and Climate Change Hub

ACCESS
- Atmospheric chemistry (UKCA)
- Atmosphere (UK Met Office UM)
- Ocean (NOAA GFDL MOM)
- Sea-ice (DOE LANL CICE)
- Ocean carbon (WOMBAT)
- Land (CABLE)
- Land carbon (CASA-CNP)
- OASIS3-MCT coupler
Two ACCESS configurations for CMIP6

• ESM 1.5
 • Older atmosphere from CMIP5 (ACCESS 1.3)
 • Includes carbon cycle
 • Less expensive to run

• CM2
 • New atmospheric model with more sophisticated chemistry/aerosol/cloud interactions
 • Physical model only – no carbon cycle
 • Same as UK HadGEM3-GC3.1 atmosphere but with CABLE replacing JULES
ACCESS-CM2 grid

- Atmosphere: 1.875° x 1.25° resolution, 85 levels
- Ocean: 1° resolution, 50 levels
- 20 minute time step, hourly coupling between atmosphere and ocean/ice
 - Land is directly coupled within the atmospheric model
Computational aspects

- UM and CICE are hybrid MPI-openMP, MOM is pure MPI
 - No advantage from multi-threading at climate resolution though it is used for NWP

- CM2 typically uses ~ 1000 cores on raijin
 - ~ 4 hours per simulated year
 - 4-5 years/day throughput for a single experiment
 - Atmosphere limits scaling and dominates cost

- 1300 simulated years for minimal CMIP6 submission
 - Several thousand in development and spinup
Historical simulations in CMIP6

~30 models available at the moment
Historical simulations

Anomalies relative to 1961-1990 mean
Pre-Industrial control drift removed
GHG emissions and concentrations

Global CO₂ emissions

CO₂ concentration

Shared socioeconomic pathways
Future projections

Temperature change relative to 1961-1990 mean
CM2 solid
ESM 1.5 dashed
ESM carbon cycle simulations

Cumulative land and ocean carbon flux since 1850

<table>
<thead>
<tr>
<th></th>
<th>Fossil</th>
<th>Ocean</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist</td>
<td>415</td>
<td>136</td>
<td>108</td>
</tr>
<tr>
<td>SSP-126</td>
<td>326</td>
<td>163</td>
<td>64</td>
</tr>
<tr>
<td>SSP-245</td>
<td>811</td>
<td>267</td>
<td>57</td>
</tr>
<tr>
<td>SSP-370</td>
<td>1508</td>
<td>367</td>
<td>-2</td>
</tr>
<tr>
<td>SSP-585</td>
<td>2179</td>
<td>438</td>
<td>38</td>
</tr>
</tbody>
</table>

Historical: 1850-2014, SSPs: 2015-2100
Idealised experiments and climate sensitivity

All presently available CMIP6 models
Equilibrium climate sensitivity from 4xCO2

<table>
<thead>
<tr>
<th>Model</th>
<th>2xCO2 ECS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS ESM 1.5</td>
<td>3.8</td>
</tr>
<tr>
<td>ACCESS CM2</td>
<td>4.7</td>
</tr>
<tr>
<td>HadGEM3 GC3.1</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Gregory method 4xCO2 regression

Change in surface air temperature (K) vs. Change in radiative flux (W/m²)

Science, 19 April 2019
Summary

• Highest priority simulations are complete
 • Looking forward to doing some analysis of the results
 • Extra ensemble members and some lower priority simulations will be done on gadi

• Grateful to NCI for ongoing support with computation and particularly now with data publication and the Earth System grid
The Earth Systems and Climate Change Hub is funded by the Australian Government’s National Environmental Science Program, with co-investment from the following partner agencies:

- CSIRO
- Australian Government Bureau of Meteorology
- Australian National University
- MONASH University
- THE UNIVERSITY OF MELBOURNE
- UNSW SYDNEY
- UNIVERSITY of TASMANIA

FOR MORE INFORMATION
Martin Dix: martin.dix@csiro.au

www.nespclimate.com.au