PSyclone - Separation of Concerns for Existing Fortran Code

Joerg Henrichs (BOM)
R.Ford, A.Porter, S.Siso (STFC – UK)
I. Kavcic (UK Met Office)
Next Generation Modelling Systems

• UK Met office decided on complete redesign of their forecast models
 - LFRic: new weather and climate modelling system
• International cooperation between UK Met Office, STFC (UK), BOM, NIWA (NZ), KMA (Korea), NCMRWF (India), Oak Ridge/US Air Force
• Maintainable HPC code:
 - Single source science code
 - Performance portability
 - Separate science code from optimisation and parallelisation
PSyclone

- Developed by STFC, UK, together with BOM
- Domain specific language embedded in Fortran
- Separation of Concerns:
 - Natural Science
 - Computational Science
- Optimisation and parallelisation is done using PSyclone scripts (python)
- Targets MPI, OpenMP, OpenACC, OpenCL, FPGA, …
PSyclone Design

- Needs specially designed code or refactoring of existing code
Using PSyclone for Existing Fortran Code

• Developed for NEMO (3d Ocean Code)
• Parses existing Fortran code, and detects kernels
 - No refactoring required
 - Creates internal representation
• Automatically adds threading parallelisation, e.g. OpenMP or OpenACC using python scripts
 - MPI parallelisation from the original source code remains
Difficulties Using PSyclone for Existing Code

• Detecting Kernels
 - Relies on strict coding standards, e.g. loop variable naming

• PSyclone does not control distributed memory infrastructure
 - Must be using existing MPI parallelisation

• Dependency analysis needed
 - Determination of shared/private variables when threading
 - Correctness of transformations
Used PSyclone with NEMO API on ROMS

- ROMS (Regional Ocean Model), 2D test case (1613x463)
 - MPI or OpenMP, but not hybrid
- Hybrid version should result in better scalability
- Automatically applied optimised OpenMP directives
 - Create large parallel regions with several parallel loops
 - Use schedule=dynamic
- No changes to source code required
 - Except some improvements to NEMO
Original Profile
Profile of PSyclone Hybrid Version
Performance on BOM's Cray XC 40 System:

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Original ROMS</th>
<th>PSyclone ROMS 1 thread</th>
<th>PSyclone ROMS 2 threads</th>
<th>PSyclone ROMS 4 threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>995.37</td>
<td>1002.2</td>
<td>995.9</td>
<td>987.6</td>
</tr>
<tr>
<td>2</td>
<td>487.1</td>
<td>487.2</td>
<td>477.7</td>
<td>481.3</td>
</tr>
<tr>
<td>4</td>
<td>276.6</td>
<td>288.4</td>
<td>274.2</td>
<td>269.4</td>
</tr>
<tr>
<td>8</td>
<td>170.4</td>
<td>173.64</td>
<td>165.1</td>
<td>160.3</td>
</tr>
<tr>
<td>16</td>
<td>143.4</td>
<td>151.5</td>
<td>134.9</td>
<td>132.3</td>
</tr>
</tbody>
</table>
Results and Summary

• PSyclone's separation of concerns can be used for well designed existing Fortran code of certain domains
• PSyclone scripts can be used to apply parallelisation and optimisation
• No code modification required
• Currently investigating operational ROMS ensembles for Stormsurge (959x463)
 - At this stage a ~2% performance improvement
 - Work in progress