Creating a SparkSession
SparkHolder
is a class in intake-spark that is used to manage a connection to a running Spark session.
When you create an intake-spark data catalog entry for a Spark data source, the driver
argument specifies that the data should be loaded using Spark. This means that a Spark session will be created to read the data. The SparkHolder
class is responsible for managing this Spark session and ensuring that it is available when needed.
SparkHolder
works by creating a singleton instance of a Spark session, which can be shared across multiple data sources. This means you an use the same Spark session to load data from multiple catalog data sources. This can help to reduce the overhead of creating and tearing down Spark sessions.
The SparkHolder
class also provides some configuration options for the Spark session, such as the number of executor cores and memory allocation. These options can be customized by passing arguments to the args
parameter when defining the data source in the Intake catalog entry.
from intake_spark.base import SparkHolder h = SparkHolder(True, [('catalog', )], {}) h.setup() session = h.session[0] session.conf.set("spark.sql.caseSensitive", "true")
Loading a Catalog Data Source
You can use one of the two options to load catalog data into Spark DataFrame.
Option 1: Loading catalog file. | Option 2: Loading data source files directly. |
---|---|
The catalog file for each dataset contains information about a set of data sources, such as their location, format, and metadata. You can use | In this option you can use |
Example code: Loading cmip6-oi10 catalog data via catalog file import intake catalog = intake.open_catalog('/g/data/dk92/catalog/yml/cmip6-oi10.yml') df = catalog.mydata.to_spark() | Example code: Loading cmip6-oi10 catalog data from data source file import intake cat_path="/g/data/dk92/catalog/v2/data/cmip6-oi10" source = intake.open_spark_dataframe([ ['read', ], ['option', ["mergeSchema", "true"]], ['parquet', [cat_path,]] ]) df = source.to_spark() |
Processing Catalog Data
Get columns of a Spark DataFrame
The NCI data indexing DataFrame
may contain several columns as below:
In[1]: print(df.columns) ['attributes', 'dimensions', 'file_type', 'file_uri', 'format', 'variables']
Some of these columns are defined as Spark StructType as they are organised in the nested manner.
StructType
is essentially a list of StructField
objects, where each StructField
object represents a single column in the schema. In a nested structure, a StructField
can have a data type of another StructType
object, which can represent a sub-structure or a nested structure.
You can print the Schema of the whole DataFrame as below. In the example outputs, those columns named "attributes", "dimensions" and "variables" are in the type of StructType which contains multiple layers of other StructType columns. On the other hand, those columns named "file_uri","file_type" and "format" are all single StructField
column in "string" type.
In[2]: df.printSchema() root |-- attributes: struct (nullable = true) | |-- CCCma_model_hash: string (nullable = true) | |-- CCCma_parent_runid: string (nullable = true) | |-- CCCma_pycmor_hash: string (nullable = true) | |-- CCCma_runid: string (nullable = true) | |-- CDI: string (nullable = true) | |-- CDI_grid_type: string (nullable = true) ... |-- file_type: string (nullable = true) |-- file_uri: string (nullable = true) |-- format: string (nullable = true) |-- variables: struct (nullable = true) | |-- 3basin: struct (nullable = true) | | |-- attributes: struct (nullable = true) | | | |-- long_name: string (nullable = true) | | | |-- name: string (nullable = true) | | | |-- units: string (nullable = true) | | |-- chunking: struct (nullable = true) | | | |-- sizes: array (nullable = true) | | | | |-- element: long (containsNull = true) | | | |-- storage: string (nullable = true) | | |-- deflate: struct (nullable = true) | | | |-- level: long (nullable = true) | | | |-- shuffle: boolean (nullable = true) | | | |-- state: boolean (nullable = true) | | |-- dimensions: array (nullable = true) | | | |-- element: string (containsNull = true) | | |-- endianness: string (nullable = true) | | |-- type: string (nullable = true) ... |-- dimensions: struct (nullable = true) | |-- 3basin: struct (nullable = true) | | |-- length: long (nullable = true) | | |-- unlimited: boolean (nullable = true) | |-- axis_nbounds: struct (nullable = true) | | |-- length: long (nullable = true) | | |-- unlimited: boolean (nullable = true) root ...
Printing out the whole schema of a DataFrame may produce an overwhelmingly long list. An alternative approach can be to select a specify column via the ".select" API and only print that schema.
For example, the following command prints out the schema of a variable named "GEOLAT".
In[3]: df.select("variables.GEOLAT").printSchema() root |-- GEOLAT: struct (nullable = true) | |-- attributes: struct (nullable = true) | | |-- _FillValue: double (nullable = true) | | |-- cell_methods: string (nullable = true) | | |-- interp_method: string (nullable = true) | | |-- long_name: string (nullable = true) | | |-- missing_value: double (nullable = true) | | |-- units: string (nullable = true) | |-- chunking: struct (nullable = true) | | |-- sizes: array (nullable = true) | | | |-- element: long (containsNull = true) | | |-- storage: string (nullable = true) | |-- deflate: struct (nullable = true) | | |-- level: long (nullable = true) | | |-- shuffle: boolean (nullable = true) | | |-- state: boolean (nullable = true) | |-- dimensions: array (nullable = true) | | |-- element: string (containsNull = true) | |-- endianness: string (nullable = true) | |-- type: string (nullable = true)
You can use the above schema to find out the columns you need to search.
Get unique values of columns
Show unique values of a single column of "attributes.experiment_id" and "attributes.institution_id" | |
---|---|
In[3]: df.select("attributes.experiment_id")\ .distinct().show() +--------------+ | experiment_id| +--------------+ | ssp534-over| |piClim-histall| | esm-piControl| | ssp585| | piControl| | ssp460| |piClim-control| | ssp370| | ssp126| | ssp119| | ssp245| | 1pctCO2| | abrupt-4xCO2| | amip| | historical| |piClim-histghg| | ssp434| | esm-hist| |piClim-histaer| | hist-aer| +--------------+ only showing top 20 rows In[3]: df.select("attributes.institution_id")\ .distinct().show() +-----------------+ |institution_id | +-----------------+ |UA | |IPSL | |E3SM-Project | |CCCma | |CAS | |MIROC | |NASA-GISS | |MRI | |NCC | |HAMMOZ-Consortium| |NCAR | |NUIST | |NOAA-GFDL | |NIMS-KMA | |BCC | |CNRM-CERFACS | |AWI | |MPI-M | |KIOST | |MOHC | +-----------------+ only showing top 20 rows | In[3]: df.select("attributes.institution_id",\ "attributes.experiment_id")\ .distinct().show(40,truncate=False) +--------------+--------------+ |institution_id|experiment_id | +--------------+--------------+ |NCC |ssp585 | |NCAR |esm-piControl | |MRI |esm-hist | |NOAA-GFDL |ssp370 | |E3SM-Project |ssp585 | |UA |ssp245 | |NUIST |ssp245 | |UA |ssp370 | |CNRM-CERFACS |ssp245 | |NOAA-GFDL |ssp585 | |CMCC |abrupt-4xCO2 | |MIROC |ssp534-over | |CAMS |1pctCO2 | |CNRM-CERFACS |ssp126 | |NASA-GISS |piClim-histall| |CMCC |piControl | |MRI |historical | |BCC |piControl | |MPI-M |esm-hist | |NCAR |historical | |MIROC |ssp126 | |MOHC |piClim-histall| |CAMS |piControl | |MIROC |ssp370 | |MOHC |ssp534-over | |MPI-M |amip | |NOAA-GFDL |ssp126 | |CCCma |piClim-histall| |CAMS |abrupt-4xCO2 | |CAMS |amip | |CNRM-CERFACS |ssp370 | |KIOST |ssp126 | |CNRM-CERFACS |ssp585 | |NCAR |piClim-control| |UA |ssp126 | |MOHC |ssp119 | |CMCC |amip | |MRI |abrupt-4xCO2 | |NUIST |ssp126 | |NASA-GISS |piClim-control| +--------------+--------------+ only showing top 40 rows |
You can specify a larger number in show() function and set "truncate=False" to display more rows in full lengths.
Searching within a Spark DataFrame
Searching within a Spark DataFrame typically involves filtering the DataFrame based on a particular condition or a set of conditions. You can define a condition using Spark's column operations. You can use any of the available functions in Spark's column API to create the condition and combine them using logical operators like 'and', 'or' and 'not'.
For example, you can define multiple conditions as below
In[3]: condition=(df.attributes.institution_id == 'AWI') \ &(df.attributes.source_id == 'AWI-CM-1-1-MR') \ &(df.attributes.experiment_id == 'historical') \ &(df.attributes.variant_label=='r1i1p1f1') \ &(df.attributes.table_id == '3hr') \ &(df.attributes.variable_id == 'pr') \ &(df.attributes.grid_label == "gn")
Then you can apply 'filter()' method of the DataFrame to apply the condition and get the filtered DataFrame. The total number of rows in the filtered DataFrame could be obtained via "count()" method as below:
In[3]: filter_df=df.filter(condition) print(filter_df.count()) 165
You can also use the 'where()'
method to achieve the same result as below:
In[3]: filter_df=df.where(condition) print(filter_df.count()) 165
Finally, you can use the show()
method to display the filtered DataFrame
In[3]: filter_df.show() +--------------------+--------------------+---------+--------------------+--------------------+--------------------+ | attributes| dimensions|file_type| file_uri| format| variables| +--------------------+--------------------+---------+--------------------+--------------------+--------------------+ |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| |{null, null, null...|{null, null, null...| f|/g/data/oi10/repl...|NC_FORMAT_NETCDF4...|{null, null, null...| +--------------------+--------------------+---------+--------------------+--------------------+--------------------+ only showing top 20 rows
Load the Dataset
From the filtered Spark DataFrame, you can extract a list of file paths from its 'file_uri' column as below:
In[3]: # import necessary libraries from pyspark.sql.functions import col flist=[row['file_uri'] for row in filter_df.select(col('file_uri')).collect()]
It is recommended to set up a Dask cluster firstly to accelerate the data loading process.
Start Dask cluster
from dask.distributed import Client, LocalCluster cluster = LocalCluster() client = Client(cluster)
Now you can load the data from a list of files via 'xarray' package as below
Loading dataset
In[3]: ds = xr.open_mfdataset(flist, chunks={'time':720}, combine='by_coords',parallel=True) print(ds) <xarray.Dataset> Dimensions: (time: 482120, bnds: 2, lat: 192, lon: 384) Coordinates: * time (time) datetime64[ns] 1850-01-01T01:30:00 ... 2014-12-31T22:30:00 * lat (lat) float64 -89.28 -88.36 -87.42 -86.49 ... 87.42 88.36 89.28 * lon (lon) float64 0.0 0.9375 1.875 2.812 ... 356.2 357.2 358.1 359.1 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) datetime64[ns] dask.array<chunksize=(720, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(2920, 192, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(2920, 384, 2), meta=np.ndarray> pr (time, lat, lon) float32 dask.array<chunksize=(720, 192, 384), meta=np.ndarray> Attributes: (12/44) Conventions: CF-1.7 CMIP-6.2 activity_id: CMIP branch_method: standard branch_time_in_child: 0.0 branch_time_in_parent: 54421.0 creation_date: 2019-05-02T11:50:26Z ... ... title: AWI-CM-1-1-MR output prepared for CMIP6 variable_id: pr variant_label: r1i1p1f1 license: CMIP6 model data produced by Alfred Wegener Insti... cmor_version: 3.4.0 tracking_id: hdl:21.14100/90ae6418-719b-4485-a424-a5682862cb2c